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ABSTRACT 

This study explores the fluxes of heat and salt 

associated with thermohaline staircases in the Beaufort Sea.  

An inverse model is developed to calculate the vertical 

transport of properties in the southern portion of the 

Beaufort Sea directly from observations.  The applicability 

of laboratory derived 4/3 flux law is addressed.  Three 

formulations of the static advective-diffusive equations are 

discretized on a uniform grid, and inverted using the method 

of Total Least Squares.  The first formulation is based on 

the classic flux-gradient model, and is analyzed in both one 

and three-dimensions.  The second formulation utilizes 

Turner formulation of the 4/3 flux law, but the formulation 

of the coefficient C(Rρ) remains unknown.  The third 

formulation includes the full form of the Kelley model, but 

the amplitude of C(Rρ) is unknown.  Layer averaged heat flux 

through the thermohaline staircases is found to be on the 

order of 1 W/m2, which is significantly higher than previous 

studies. This implies that the laboratory formulation of the 

4/3 flux law may require calibration in order to accurately 

represent Arctic conditions. 
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I. INTRODUCTION AND BACKGROUND 

A. ARCTIC CIRCULATION 

Sea ice in the Arctic is melting at an alarming rate, 

much faster than expected (Stroeve et al., 2007).  The years 

2007–2009 have seen the lowest summer sea ice coverage in 

the Arctic in the modern era.  Ice melt in the Arctic has 

been largely attributed to rising greenhouse gas 

concentrations and the associated warming of the atmosphere.  

The ocean, however, responds to the atmospheric conditions 

on much longer time scales.  We are only beginning to 

understand the response of the Arctic Ocean to the 

atmospheric forcing associated with climate change (Stroeve 

& Maslowski, 2008; Dickson et al., 2000).  One such response 

is the delivery of significantly elevated quantities of 

warmer water to the Canada Basin and Beaufort Sea.  This 

additional warm water, which has taken decades to traverse 

the Canada Basin, adds significant amounts of heat to the 

upper Arctic Ocean, aggravating the ice melt problem.  

The heat stored in the oceans directly influences the 

melting rate of the ice from below.  Perovich et al. (2003) 

showed a 1-2 W/m2 difference between the amount of heat 

necessary to melt the ice from below and the atmospheric 

heat fluxes calculated over open water.  They suggest that 

there must be oceanic sources of heat to the ocean-ice 

interface.   Understanding the mechanisms that drive the 

heat flux to the ice from the ocean is critical to the 

explanation and prediction of increased sea ice melt.  The 

ocean can play a role in melting sea ice via several 
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mechanisms.  Ice-ocean interactions include horizontal 

advection of warm water from the Pacific and Atlantic oceans 

under the ice cove; the accumulation of heat due to 

increased solar radiation in ice diminished regions; and 

locally induced upward heat flux into the mixed layer due to 

upwelling, topographically controlled flow, and eddies 

(Maslowski et al., 2009).  

This thesis will focus on the role of double diffusion 

in oceanic heat transfer, which is a subject of growing 

interest in oceanography and Arctic sciences. It is argued 

that double-diffusive convection may also play a significant 

role in transferring heat upward into the Arctic mixed 

layer.  The heat transported toward the ocean surface via 

diffusive convection may be a critical component to 

understanding the connection between ocean dynamics and sea 

ice extent in the Arctic.   

B.  DOUBLE-DIFFUSIVE CONVECTION 

Double diffusion is defined as a set of processes 

related to the difference in molecular diffusivities of heat 

and salt.  It is known to influence vertical mixing in the 

ocean, and comes in two forms: salt fingering and diffusive 

convection.  Salt fingering is prevalent in the mid-

latitudes, while diffusive convection is the form of double 

diffusion seen in the Arctic. 

The term diffusive convection is used to describe two 

types of motion that arise in fluids with a negative 

vertical gradient of temperature and salinity.  The first is 

characterized by oscillations in smooth temperature-salinity 

gradients.  The other, diffusive layering, operates in a 
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thin interface, which separates two homogeneous layers. Heat 

and salt are transferred across the diffusive interface.   

The oscillatory regime of double diffusive convection 

is described in Figure 1. 

 

Figure 1.   The oscillatory regime of double diffusive 
convection 

Imagine a parcel of water in a lower layer that is 

displaced upward.  This parcel is warmer and more saline 

than the layer of water above.  As the parcel enters the 

layer above, it immediately begins to lose heat, via 

molecular diffusion, to the surrounding upper layer at a 

rate nearly 100 times as fast as it loses salt.  The result 

is cooling of the parcel, while it maintains its salinity.  
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The parcel then begins to descend, due to its increasing 

density, as it cools.  The denser parcel begins to gain heat 

in the lower, warmer layer, again via molecular diffusion, 

and once it gains a sufficient amount of heat its density 

decreases and the parcel begins to rise again.  This mixing 

results in the formation of layers of near constant 

temperature and salinity.  It is these layers that define 

the second form of diffusive convection, diffusive layering.  

This process is known to be prevalent in the Beaufort Sea.  

 

Figure 2.   Temperature – Salinity (From Timmermans, 2008) 

Diffusive layering occurs in a stable environment, 

where, in the case of the Arctic, cold fresh water overlies 

warm and salty water, as seen in Figure 2. 
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Figure 3.   Diffusive Layering - Fluxes of heat and salt are 
transported upward across the thin layer, causing 

convection and mixing within the homogeneous layers. 

Diffusive layering is manifested in the Arctic 

thermocline by a series of homogeneous layers of near 

constant temperature and salinity separated by a thin 

diffusive interface.  This natural occurrence is often 

referred to as a thermohaline staircase.  The physical 

processes associated with the maintenance of this structure 

(Figure 3) can be described as follows:  Heat and salt are 

transferred upward through the diffusive interface.  The 

water just above the interface gains sufficient heat to 

begin upward motion due to excess of buoyancy.  This water 

begins to rise within the layer, driving the convection that 

ultimately maintains the homogeneous properties of the mixed 

layer.   
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The data shown in Figure 2 are representative of the 

majority of the data collected by the Woods Hole 

Oceanographic Institute (WHOI) Ice Tethered Profiler (ITP) 

program.  The warm water seen from ~300 meters and below 

originates in the Pacific and Atlantic oceans and is 

advected into the Beaufort Sea via the Arctic current 

system.  The cold water above is a result of downward 

temperature flux associated with the cold surface and air-

sea-ice interaction.  The less saline, or relatively fresh, 

surface water is a result of annual ice melt and fresh water 

flux associated with river runoff.  These conditions, and 

the lack of vertical mixing below the surface mixed layer, 

provide an ideal environment for the formation of double 

diffusive staircases. 

C. EARLIER ESTIMATES OF HEAT FLUX 

The fluxes associated with double diffusion have been 

studied extensively.  It is generally accepted that in 

systems characterized by active diffusive layering, the 

interaction between layers is controlled by the flux of salt 

and heat across the diffusive interfaces.  Based on a set 

laboratory experiments the balance of temperature variation 

between adjacent layers and heat flux (Turner, 1973) was 

proposed as follows. 

( )
4
3

1TF A Tα α= ⋅ Δ  (1) 

SR
Tρ

β
α
Δ

=
Δ

  (2) 

This relationship (1) has since been known as the 4/3 

flux law.  A1 has the dimensions of velocity and is a 
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function of the density ratio (Rρ). FT is temperature flux, 

α is the thermal expansion coefficient, and β is the saline 

contraction coefficient. 

The 4/3 flux law states that the fluxes associated with 

double diffusion are controlled entirely by the variation in 

temperature or salinity across the diffusive interface and 

is independent of layer thickness.  The lack of sensitivity 

of fluxes to vertical scales is critically important to our 

observation-based study because the thickness of an 

interface is often much smaller (<25cm) than the resolution 

of the sensor, whereas, a difference in mean temperatures of 

each layer can easily be measured.  Dimensional analysis 

suggests that the 4/3 flux law can be written as follows: 

( ) ( )
1

2 43
3T

T
gF C R Tρ
κα α
ν

⎛ ⎞
= ⋅ ⋅ Δ⎜ ⎟

⎝ ⎠
  (3) 

C(Rρ) is an unknown constant, g = 9.8 m/s, ν = 1.8X10-6 

m2/s is the kinematic viscosity, κ = 1.4X10-7 m2/s is the 

molecular diffusivity of heat.  

Marmorino and Caldwell (1976) examined the 4/3 flux law 

in depth.  They discovered an empirical formulation of the 

coefficient C(Rρ) using the following equations: 

23.8
sp

H R
H ρ

−=     (4) 

( )
1

43
30.085sp T

gH k Tα
κν

⎛ ⎞= Δ⎜ ⎟
⎝ ⎠

  (5) 

( ){ }0.101exp 4.6exp 0.54 1
sp

H R
H ρ⎡ ⎤= − −⎣ ⎦  (6) 
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( ) { }( )0.00859exp 4.6exp 0.54 1C R Rρ ρ⎡ ⎤= − −⎣ ⎦  (7) 

Using Huppert’s formula (4), they were able to 

determine a relationship between the measured heat flux (H) 

and (5), the theoretical heat flow through a non-deformable 

interface (Hsp). They proposed a new formulation also based 

on laboratory experiments (6), which ultimately yielded a 

value for C(Rρ). 

The coefficient C(Rρ) has since been scrutinized, most 

notably by Kelley (1990).  In his 1990 paper, Kelley 

proposed a new value for C(Rρ) based on what he referred to 

as a full collection of laboratory measurements.  He 

analyzed laboratory experiments for 1 10Rρ≤ ≤ , while Turner 

(1973) only looked at values of Rρ up to 7. 

( ) 0.72

4.80.0032expC R
Rρ
ρ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
   (8) 

Equation (8) is the result of Kelley’s laboratory 

experiments, and along with (7), the two have been used 

interchangeably as a standard method for calculating fluxes 

using the 4/3 flux law.  However, Kelley suggested that 

perhaps the 4/3 exponent is incorrect and should be changed 

to 5/4.  Additional experimentation is required to support 

this proposition. 

Padman and Dillon (1987) showed that using the 

Marmorino and Caldwell formulation of the 4/3 flux law, they 

could calculate the fluxes in the Beaufort Sea.  Their 

results showed that those fluxes were 0.02 — 0.1 Wm-2.  A 

more recent study (Timmermans, 2008), also based on 

extrapolation of laboratory derived results, estimated the 
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heat flux associated with the diffusive staircases as 

measured by the Ice Tethered Profilers to be 0.22 +/- 0.10 

W/m2.   

Wilson (2007) compared the two formulations (7) and (8) 

using data collected via the Ice Tethered Profilers, a set 

of moored CTDs in the Beaufort Sea, which will be discussed 

in detail in Chapter II.  She found that in order to fit the 

data collected in the Beaufort Sea to these formulae each 

needed to be multiplied by a transfer coefficient.  She 

suggested that the laboratory results of both Kelley (1990) 

and Marmorino and Caldwell (1976) cannot be applied to 

actual data collected in the field, and perhaps the 

laboratory measurements require calibration prior to 

application in the Arctic.  She concluded that the average 

heat flux in the Beaufort Gyre in excess of 1 Wm-2.  This is 

significantly larger than estimates using the original 4/3 

flux law. 

Caro (2009) used a set of high-resolution numerical 

experiments to validate some of the conclusions made by 

Wilson.  He used two-dimensional numerical models to 

estimate the heat fluxes in the Beaufort.  His efforts 

resulted in fluxes on the order of 1 W/m2. 

Timmermans’ findings differ from Wilson’s (2007) and 

Caro's (2009) by an order of magnitude, and in some cases 

Padman and Dillon’s differ by two orders of magnitude.  Such 

a wide range of estimates in a region critically important 

for climate variability provides the impetus for this study.  

This thesis attempts to resolve the controversy in 

assessment of the vertical heat transport by applying 

inverse modeling techniques to observations.  
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D. INVERSE MODELING 

The study of the oceans traditionally follows two 

distinct directions.  One involves numerical modeling and 

theoretical manipulation of the equations governing dynamics 

and thermodynamics of the sea.  The other is observationally 

oriented, where real measurements are discussed in the 

context of qualitative physical principles.   

As oceanography matures into a quantitative science, it 

becomes increasingly desirable to connect the observational 

and modeling aspects of the field.  Laboratory experiments 

often attempt to bridge this gap between hard facts and 

theoretical deductions. Laboratory researchers strive to 

replicate the ocean environment as closely as possible, but 

exact correspondence is seldom achieved, given the 

substantial differences in the conditions and spatial scales 

between the laboratory and nature.   

Another more recent approach, which makes it possible 

to connect data with theory, involves inverse modeling.  

Inverse models attempt to directly calculate model 

parameters from observations by minimizing errors associated 

with observational measurements and fitting those 

measurements to the governing equations.  In our case, 

temperature, salinity and depth measurements were taken by 

the Ice Tethered Profilers, and velocity and diffusion 

coefficients are calculated from those observations using 

the method of Total Least Squares.   

 ( ) ( )T
wTT F
z z

∂ ∂
∇• + =

∂ ∂
V  (9) 

 ( ) ( )S
wSS F
z z

∂ ∂
∇• + =

∂ ∂
V  (10) 
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 0w
z

∂
∇• + =

∂
V  (11) 

The inverse model in this study is based on the static 

advective diffusive (9), (10) and mass continuity equations  

(11) in divergence form.  FT, and FS is the temperature or 

salinity flux.  The formulation of FT and FS is central to 

this study.  In this work we examine flux-gradient 

formulations in which FT, and FS are assumed to be 

controlled by the background temperature and salinity 

gradients, as well as the interfacial flux laws.  Results of 

both are qualitatively consistent, but differ in details. 

E. UNRESOLVED ISSUES 

This thesis attempts to quantify the heat flux 

associated with diffusive convection independent of the 

extrapolation of laboratory derived laws. This information 

is used to address the following questions.  

1. What are the typical vertical heat and salt fluxes 

in the diffusive staircases in the Beaufort Gyre? Vertical 

heat fluxes of 0.02 — 6 Wm-2 represent an extremely wide 

range making it difficult to assess the large-scale 

consequences of heat transfer in the Arctic.  If the value 

is less than 1 Wm-2, then it is likely that the heat 

delivered upward vis-à-vis diffusive convection is not a 

major contributor to sea ice melt.  However, if Wilson 

(2007) is correct, then diffusive convection is sufficient 

to affect the pattern on stratification and ocean climate in 

the Arctic.   

2. Can the heat flux through the diffusive staircases 

significantly contribute to the heat imbalance associated 

with the melting of the polar ice cap?   
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3. What are the relative roles of the vertical and 

lateral transport of heat in Beaufort gyre?  Is it possible 

to capture the zero-order dynamics at play by a one-

dimensional horizontally averaged model?  

4. Is it possible to accurately evaluate fluxes 

associated with double diffusion by inverse modeling 

techniques?  Lee and Veronis (1991) showed that it is 

possible to quantify the fluxes via an inverse model using 

the method of Total Least Squares in the tropical Atlantic 

Ocean.  A similar inverse model of the advective-diffusive 

equations is applied to data collected from 2004-2009 via 

the Ice Tethered Profilers operated by the Woods Hole 

Oceanographic Institute.  Using methods described in Lee and 

Veronis (1991) the inverse technique is implemented to 

determine eddy diffusivity coefficients using the method of 

total least squares.  A comparison to the estimates using 

the 4/3 flux laws described in Timmermans (2008) and Padman 

and Dillon (1987) is discussed along with a comparison to 

Wilson (2007), additionally the results of this study area 

compared to the model results from Caro (2009). 

This thesis is organized as follows: Chapter II reviews 

the data from the Ice Tethered Profilers and some of the 

unique processing required for obtaining the appropriate 

data set for the inverse calculation.  Chapter III offers a 

detailed description of the mathematical foundation of the 

inverse model as well as its application to the ITP data 

set.  Chapter IV presents the results of four models, the 

one dimensional (vertical only) model, which uses an average 

single profile to determine fluxes, and three variations of 

a full three dimensional model.  A discussion of the 

findings and conclusions is in Chapter V.   
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II. DATA AND DATA PROCESSING 

A. ICE-TETHERED PROFILER DATA 

The Woods Hole Oceanographic Institute (WHOI) Ice 

Tethered Profiler (ITP) program was established in 2004 to 

provide timely and accurate oceanographic measurements in 

the Arctic Ocean.  Historically, access to the ice covered 

Arctic Ocean has been limited.  The ITPs assist in assuring 

consistent measuring capability in a data-sparse 

environment.  Between 2004 and 2006, the first six ITPs were 

deployed in the Beaufort Sea.  Data from ITPs 1-6 are used 

in this study.  As of July 2009, these six sensors collected 

over 7000 profiles, all of which have been made available to 

the public.  

The ITP is a moored conductivity, temperature, and 

depth (CTD) sensor.  Each one is designed to move with the 

ice it is moored to and has the potential lifespan of 

approximately three years. The ITP consists of a small 

platform on top of which rests a buoy.  A 10-inch hole is 

drilled through the sea ice and the instrument is inserted 

in the water from above.  The instrumentation is tethered to 

the surface float via a wire rope that is weighted on the 

bottom.  This rope is approximately 800 meters in length, 

and the instrument traverses the wire rope several times 

daily.   
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Figure 4.   Ice tethered profiler system 
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Figure 5.   Location of ITP 1-6 

Figure 4 illustrates the ITP system and Figure 5 

presents the trajectories of the first six profilers 

followed over their lifespans.  The data used in this study 

are labeled “Level 3 Archive Data” by WHOI.  This form of 

data represents the best possible representation of the 

ocean properties as measured by the ITPs.  Corrections have 

been applied that account for sensor response, regional 

conductivity variation, and quality assurance.  Each data 

file is formatted to be compatible with MATLAB.  Each 

profile was retrieved via 

ftp://ftp.whoi.edu/whoinet/itpdata/ and processed further as 

described below. 
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B. DATA PROCESSING 

The corrected ITP data described above was arranged by 

profiler number 1-6 and processed together as one data set.  

Processing began with the corrected ITP data obtained from 

the WHOI ITP Web site.  Wilson (2007) suggested that 

anomalous results were obtained from the profiles 

corresponding to the downward data collection for each cast.  

This is possibly due to sensor contamination associated with 

the main ITP sensor platform below the sensor suite.  As the 

profiler is lowered into the water the platform interacts 

with the water just below the sensors, affecting the 

measurements.  Based on this suggestion, all downward 

collected profiles were removed from the total dataset, 

effectively reducing the amount of data by half. 

Diffusive convection occurs in the thermocline region 

of the Beaufort Sea between approximately 200 meters and 400 

meters depth, with the majority of the diffusive layers in 

the upper 100 meters of the thermocline.  The data were then 

reduced to only those data from 200 db pressure to 300 db 

pressures, which correspond to roughly 195 meters to 295 

meters depth.  All temperatures were converted to potential 

temperature.  Table 1 summarizes the remaining data.  Each 

profile consists of temperature, salinity, pressure, and 

depth measurements. 
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ITP  
Max # of Obs in 

each Profile # of Profiles
1 1051 1022 
2 520 122 
3 1987 766 
4 1917 349 
5 2327 547 
6 1710 667 

Table 1.  Number of Observations (individual data points) 
for Each Profile.  Each profile has up to the maximum 
number of observations indicated.  Not all profiles 

have the maximum number of observations. 

These data were further reduced by determining the 

values of temperature and salinity at the center of each 

layer.  This was accomplished by searching the data for the 

local maxima of vertical temperature gradient.  This local 

maximum corresponds to the interface between each layer.  

Using the position of each interface, the center of each 

layer is determined to be exactly half way between two 

adjacent interfaces.  The temperature, salinity and depth of 

these data points is recorded and marked.  Table 2 shows the 

number of individual diffusive layers found in the data 

organized by profiler. 

 

ITP  # of Layers # of Profiles
1 48 1022 
2 39 122 
3 51 766 
4 54 349 
5 51 547 
6 62 667 

Table 2.  Number of Layers for Each Profile. 
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Figure 6.   Temperature – Salinity plot for ITPs 1-6. 

The diffusive layers next must be classified 

independently of the particular cast.  Timmermans (2008) 

showed that each diffusive layer can be identified via a 

plot of potential temperature versus salinity.  Figure 6 is 

a Temperature-Salinity plot for each ITP used in this study.  

The vertical clusters at nearly constant salinity are 

associated with a horizontally homogeneous layer, a 

diffusive layer.  Due to the remarkable lateral coherence of 

layers in the thermohaline staircase, it is possible to 

consolidate the data into one dataset by identifying 

pronounced layers that appear in all six datasets. 
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Figure 7.   Histogram of data: Number of data points for a 
given salinity value.   

Using a moving window across salinity space that 

corresponds to a 0.001 PSU increment from 34.3 PSU to 34.6 

PSU we estimated the concentration of data points as a 

function of salinity, as shown in Figure 7.  The blue curve 

is the original histogram.  The red curve is a 5-point 

moving average, which is used to identify the individual 

layers.  Noting that the concentration of points is highest 

at the center of the layers and lowest at the interface, we 

assume that the troughs in the histogram represent the 

boundary (interface) between each layer.  The black dashed 

lines represent the inferred interface locations.
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ITP  # of Layers # of Profiles
1 19 1022 
2 19 122 
3 19 766 
4 19 349 
5 19 547 
6 19 667 

ALL 19 3452 

Table 3.  Total number of layers and profiles in final data 
set. 

These values are used to enumerate layers in all 

profiles.  The result is a total of 19 layers common to each 

profiler (Table 3).  The data between adjacent troughs 

(dashed lines in Figure 7) are considered to be in the same 

layer.  Thus, layer 1 contains data only from the region 

between the first two troughs on the left of the graph.  

Layer 1 corresponds to the shallowest layer in the 

thermocline, and layer 19 corresponds to the deepest (as 

salinity increases downward).  It is important to note that 

diffusive layers in the Beaufort Sea are not limited to 

these 19.  These are the layers that are common to all 6 

ITPs used in this study.   

The highlighted portion of Figure 7 shows the 

difficulty in capturing each layer accurately.  The blue 

line clearly shows a highly variable structure in this 

region, and our method for determining the interfaces 

between adjacent layers is not precise enough to account for 

this variation.  As a result, we observed some anomalous 

results in the inverse calculations.  



 21

  

Figure 8.   Locations of each profile. 

Ultimately, each profile yielded a specific value of 

temperature, potential temperature, salinity, layer 

thickness, depth, pressure, and latitude and longitude for 

each of the 19 layers.  Figure 8 is a plot of the locations 

of all 3452 profiles.  The next step involves interpolation 

of the data onto a structured grid for use with the inverse 

model. 

C. INTERPOLATING DATA TO A GRID 

The inverse model used in this study requires the data 

to be applied to an equidistantly spaced grid in both 

horizontal directions.  This is accomplished using the 

MATLAB routine “griddata,” which linearly interpolates the 

data to a pre-determined set of grid coordinates.  The 

result is a dataset that is compatible with the inverse 

model.  The horizontal length scale is 15 km, both zonal and 

meridional, unless otherwise noted.  The vertical length 

scale is defined by the layer thickness at each location.  
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Figure 9.   Location of the three-dimensional dataset. 

The grid used for the three dimensional model has the 

dimensions 7X7X19.  Figure 9 shows the location of the grid.  

This location in the southern Beaufort Sea was chosen 

because of the high density of original profile locations, 

as well as the relatively even distribution of profiles 

throughout the grid domain.   
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Figure 10.   (a) Salinity surfaces for 19 layers used in the 
inverse calculation. (b) The corresponding potential 

Temperature surfaces. 

The structured data are shown in Figure 10, which 

reveals nearly constant temperature and salinity values in 

each of the diffusive layers, and the lateral coherence of 

those layers over of the model domain.  For both Figures 10a 

and 10b, the layers are arranged from the deepest to the 

shallowest from top to bottom.  The salinity values for each 

layer are nearly constant spatially.  The temperature values 

vary slightly, but the homogeneity is evident. 
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III. INVERSE MODEL 

A. MODEL FRAMEWORK 

In order to apply (9), (10) and (11) to measurements 

they must be discretized in space.  This is achieved by 

integrating vertically from the bottom (b) to the top (t) of 

each layer, assuming vertically uniform temperature and 

salinity within each layer, consistent with characteristic 

properties of diffusive convection in thermohaline 

staircases.   
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~
V  represents the vertically integrated horizontal 

velocity along the layer, and w represents the vertical 

velocity across the interface.  The vertical influences into 

and out of each layer are described by the diffusive and 

convective terms in (12) and (13) (Lee et al., 1991).   

The inverse model is based on the optimal solution to 

the overdetermined linear system of equations Ax=b.  

Literature refers to A as the data matrix and b as the 

observation vector.  We will follow this same convention in 

this study.  The solution is x, a vector with the same 

dimensions as b where each component of x represents the 

coordinates of b in terms of the columns of A.   
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Figure 11.   The seven-point grid network for finite 
differencing. (After Lee & Veronis, 1991) 

To formulate the problem in terms of the algebraic, 

rather than the differential system the governing equations 

are discretized in three dimensions using centered finite-

differencing on a seven-point grid (Figure 11).  Each cell 

in the grid has the measured tracer value, temperature and 

salinity, in the center, u and v on the lateral boundaries 

and w, FT and FS on the vertical boundaries. 
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The model discretization is employed exactly as 

described in Lee and Veronis (1991).  Equations (15), (16) 

and (17) are the discretized forms of the advective 

diffusive equations and the continuity equation 

respectively.  The indices i, j, k represent the location of 

the tracer for that grid cell, where i increases eastward, j 

increases northward, and k increases downward with depth.  

The ½ values correspond to the boundaries of the grid cell.  

Velocities and diffusive fluxes into and out of each cell 

are calculated at the boundary between grid cells.  Thus, 

the coefficients are weighted averages of thickness and 

tracer values at each corresponding boundary. Slight 

variations are used in the three-dimensional models as we 

explore different formulations of flux calculations.  These 

variations are described in Chapter IV.   

Notice that the integrated forms of the original 

equations are homogeneous.  Thus, the model will have an 

exact trivial (zero) solution.  To avoid this unphysical 

solution one must introduce a known, or estimated, quantity 

that can be used to populate a non-zero observation vector 
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b.  This known quantity will be referred to as the reference 

unknown xr.  To illustrate the concept of a reference 

variable consider a homogeneous system (b=0) of four 

equations with three unknowns. 

1
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  (18) 

Let us assume that the value of x1 is known or can be 

readily estimated with some degree of certainty.  All of the 

equations can be divided by x1=xr.  This effectively forces 

an inhomogeneous term where b≠0 and creates a non-trivial 

solution to the problem.  
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Lee (1991) showed that this is an effective method to 

produce the inhomogeneous terms that are necessary for the 

inverse calculations.  The model, however, is very sensitive 

to the choice of reference variable.  This sensitivity is 

explored in Chapter IV. 

Another essential step to obtain a reliable solution to 

the problem is to ensure that the system of equations is 

overdetermined, i.e., that we have more equations than 

unknowns.  This acts to smooth out the errors in the data.  

Each grid cell contains three equations, two tracer 

(temperature and salinity) equations, and continuity.  As 

written, there are three equations and five unknowns, u, v, 
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w, FS, and FT.  Two important assumptions are made to ensure 

that there are fewer unknowns than equations. The first 

assumption is that w, FS and FT are constant at each 

interface, and the second is that w at the top layer is 

equal to Ekman pumping velocity (we ≈ 5 x 10-7 m/s) at the 

top of the thermocline (Yang, 2006).  This ensures that the 

system is overdetermined.  In our case, we have 1275 

equations and 1073 unknowns 

Finally, the data matrix A and the observation vector b 

are built using the coefficients in (15), (16) and (17).  

This is accomplished by populating a matrix with the 

coefficients of the model unknowns in the correct location.  

Each equation is represented by a specific row and each 

unknown by a specific column.  The result is a very sparse 

matrix, where most of the values in the matrix are zero.  
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Equation (20) is an example of the structure of the 3-

dimensional form of the data matrix A, and n corresponds to 

the number of u unknowns.  A similar pattern continues for 

the coefficients of v, w, FT, and FS completes the matrix.  

In our case A has the dimensions 1275 rows (equations) X 

1073 columns (unknowns).   

The reference unknown and its corresponding 

coefficients are divided through as shown in (19), and the 

vector b is obtained by subtracting the coefficients for the 
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reference variable from both sides of the equation.  The 

basic framework for the TLS method and the inverse 

calculation is now complete. 

B. THE "BEST" SOLUTION TO THE OVERDETERMINED SYSTEM 

The methods for solving Ax=b, where the data matrix 

mxnR∈A  and the observation vector nR∈b  are given, are 

relatively well known.  Specifically, when m > n and 

therefore Ax=b is an over determined system; i.e., one that 

has more equations than unknowns, there is generally no 

exact solution.  In such cases then, one attempts to 

formulate a “close” problem that is exactly solvable. 

   

Figure 12.   Least squares and total least squares fits of a 
set of m=20 data points in the plane and just one 
unknown x. ai and bi represent the components of an 

example data matrix a and an observation vector b. In 
the least squares fit the error only exists in b and in 
the total least squares fit errors exist in both a and 

b. (From Markovsky et al., 2007) 
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Figure 13.   Least Squares and Total Least Squares fits of a 

plane A and vector b.  The plane A is a representation 
of all possible values for Ax.  Ultimately only one 
vector Ax represents the closest approximation of b. 

(a) LS minimizes the vector -r, where -r only 
represents error in the vector b,  by projecting b onto 
the plane A. (b) TLS minimizes -[E|r] which represents 
the error in both A and b, needed to project b onto the 

perturbed plane A.  Both the data matrix and the 
observation vector are corrected to find an exact 

solution. 

The classical method of Least Squares attempts to find 

a "best" solution by assuming that no exact solution exists 

entirely due to error in the observations. A in theory is 

assumed to be precisely correct and some small correction r 

exists such that Ax=b+r is exactly solvable.  (In this case 

-r represents the errors in the observation vector.)  The 

solution of the problem is a vector nR∈x  corresponding to 

the minimum correction required to make the problem 

solvable, i.e. 
2 2

min min
n nR R∈ ∈

=
x x

Ax -b r .  Geometrically, the 

solution represents either minimizing the sum of the squared 

vertical distances from the data points to the fitting curve 

(Figure 12a), or the projecting the data vector onto the 

plane spanned by the columns of A (Figure 13a).  

The total least squares method is an extension of the 

classical Least Squares technique that takes into account 
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errors in both the data matrix A and the observation vector 

b (Golub et al., 1980).  The method assumes that only 

(A+E)x=b+r is exactly solvable.  E represents the correction 

in the data matrix A and r represents the correction in the 

observation vector b.   
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m n

ijF
i j= =

= ∑∑E | r E | r  (21) 

The solution corresponds to making the minimum 

correction in the sense that min [ ]
F∈ (A+E)b+r R

E | r , where 
F

•  denotes 

the Frobenius norm, and mxnR∈E  and nR∈r .  The Frobenius 

norm is defined as square root of the sum of the absolute 

squares of the elements of the matrix (21). 

Geometrically,  the total least squares solution can be 

described as either minimizing the sum of the squared 

orthogonal distances from the data points to the fitting 

curve (Figure 12b), or the projecting the data vector onto 

the plane spanned by the columns of A+E (Figure 13b).  

The Total Least Squares and Least Squares methods are 

shown schematically in Figure 12 and Figure 13.  The 

difference in the solutions for the two methods amounts to 

changing both the slope of the line and the intercept 

(Figure 12), or adjusting both the plane A and vector b 

(Figure 13) to find a solution, represented by the fit line 

in Figure 12 and the colored vectors on the plane in Figure 

13.  

There are two other important characteristics of the 

TLS solution to consider.  First, the method implicitly 

assumes that the values of the data matrix A and observation 

vector b are roughly the same.  In Figure 12, the range of 
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ai and bi are roughly the same, approximately -2 to 2.  This 

is important to limiting the sensitivity of the solution 

since the method of TLS makes absolute, not relative, 

changes to A and b.  If the range of each input matrix is 

nearly the same, then the norm of the solution vector x will 

be approximately 1.  If there are one or more orders of 

magnitude difference in the range of the data matrix A and 

observation vector b then it is likely that the solution to 

the total least squares problem will be greatly different 

from the least squares problem.  A large difference between 

TLS and LS can be interpreted as a warning sign that the 

solution may be physically inconsistent, as illustrated in 

Figure 14.  A difference by a factor of four in the norms of 

A and b can result in dramatic differences in solutions. 

 

Figure 14.   The importance of similar norms for A and b.  (a) 
A properly scaled problem, where A and b have the same 
norm.  (b)  The norms of A and b differ by a factor of 

four. 

The second point is that the method implicitly assumes 

that the relative errors associated with the data matrix A 
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and observation vector b are comparable.  A large error in 

either input matrix will skew the TLS solution relative to 

the pattern realized in nature.   

An accurate and reliable estimation of E and r are 

paramount to the TLS solution.  The value of the correction, 

[E|r], tells us how far to move or perturb the space of 

[A|b] to obtain the solution x.  This is accomplished via 

the Singular Value Decomposition (SVD).  

This process begins with the augmentation of the data 

matrix A with the observation vector b giving a new matrix 

C=[A|b].  The matrix C is factored into three distinct 

components orthonormal matrices U and V and a diagonal 

matrix Σ.   

[ ]|= = TC A b UΣV       (22) 

( )
1

2

0 0
0 0

0 0 n

σ
σ

σ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(1)T

(2)T
(1) (2) (n+1)

(n+1)T

v
v

u u u

v

L

L
L

M M O M M

L

 (23) 

1 1
1 2 nσ σ σ + += + + +(1) (1)T (2) (2)T (n ) (n )Tu v u v u vL    (24) 

Equations (22), (23), and (24) are three formulations 

of the SVD.  The result is a series (24) where the first 

term represents the largest singular value of the data, an 

analogue to the largest amount of energy, and the last term 

represents the least amount of energy in the system.  This 

is very similar to Fourier series where the terms are 

multiple harmonics from lower frequencies to higher 

frequencies.  SVD simply goes from higher energy to lower 

energy.   
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An important distinction of SVD is related to the 

ordering of the coefficients σi.  The magnitude of each 

value of σi decreases with i, and therefore the most energy 

in the system is contained in the first component and the 

least energy is contained in the last component of the 

system. 

As noted before the TLS solution corresponds to the 

correction min [ ]
F∈ (A+E)b+r R

E | r  where 
F

•  denotes the Frobenius 

norm.  Given the SVD, the Frobenius norm can be easily 

calculated. 

2 2 2
1 2 nF

σ σ σ• = + + +L    (25) 

The Frobenius norm (25) differs greatly from the 2-norm  

used in the Ordinary Least Squares calculation.  Recall, the 

solution to the Least Squares problem, 
2 2

min min
n nR R∈ ∈

=
x x

Ax -b r , 

where, 12
σ=C .  The 2-norm only considers the singular 

value with the highest energy (σ1), whereas, the Frobenius 

norm considers a range of singular values.  Thus, the 

Frobenius norm contains a more inclusive representation of 

the system.   

~

1 2 nσ σ σ= + + +(1) (1)T (2) (2)T (n) (n)TC u v u v u vL  (26) 

( 1) ( 1) ( 1) ( 1)
1

n n T n n T
nσ

+ + + +
+= − = −Δ u v Cv v      (27) 

1 ( ) 1
minn Frank C n
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= Δ     (28) 

Given (24) , the closest (in a 
F

•  sense) rank n 
~
C to 

C is given by (26), which is simply (24) with the last term 

dropped.  Therefore (27) and (28) are true. 
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x
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Consider C=[A|b], which has rank (n+1).  A is rank n 

and when augmented with b the rank becomes (n+1).  The TLS 

problem can be reformulated as (29), which implies that 

[ ]=
~
C A + E | b + r  is no more than rank n, because 

~
C is equal to 

C with the last term removed.  The last term in C is used to 

formulate the correction matrix Δ. 

Ultimately, what is sought is a matrix [ ] ( 1)mx nR += ∈Δ E | r  

that describes the minimum perturbation to the data matrix 

A, and the observation vector b such that 
~
C is rank n and 

the solution for (29) exists.   

It follows that the solution can be determined via the 

last (n+1) column of V, defined as ( 1)n+ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

y
v

α
, where ∈ ny R , 

and 0≠α .  If x = -[y/α], and ∆ = [E|r] = -CvvT then (29) is 

solved exactly. 

C. SCALING THE MATRIX 

Ensuring that each equation is treated with equal value 

in the model requires that we normalize each row.  This has 

two purposes: one is to prevent the appearance of spurious 

solutions, and the other is to up weight the more reliable 

equations (Lee, 1991).  In this study, we divide each row by 

its Frobenius norm (for vectors the Frobenius norm is 

equivalent to the 2-norm), so that all of the equations have 

the same norm in the system. 
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It is sensible to presume that the continuity equation 

is less prone to error than either tracer equation, since 

there are no tracer values in continuity.  For this reason, 

we multiplied the continuity equation by 10, effectively 

stating that continuity is more reliable than the other two.  

The value of the multiplier is important, but choosing 10 or 

100 ultimately does not change the outcome.  We simply give 

continuity a higher weight (relative importance to the 

problem) than the tracer equations. 

D. PARAMETERIZATIONS OF THE VERTICAL FLUXES  

Four models are discussed in this work, each having a 

different formulation of the fluxes (FS, FT).   

 T T
TF K
z

∂
=

∂
 (30) 

 ( )( )4/3
TF C R Tρα α= Δ  (31) 

 ( )( )4/3
TF B C R Tρα α= Δ�  (32) 

Equation (30) is the classical form of flux that is 

dependent on the gradient of the tracer (temperature or 

salinity).  This form is explored in both a one-dimensional 

model and a three-dimensional model. 

Equations (31) and (32) are based on Turner's 4/3 flux 

law and invokes a more specific formulation proposed by 

Kelley (1990).  Equation (31) is explored where the 

formulation of C(Rρ) is unknown, while (32) has the full 

form of C(Rρ) and the amplitude is unknown. 

In Chapter IV, we present the one-dimensional model, 

which corresponds to the (30) formulation of the fluxes, and 

the three three-dimensional models: Model 1, Model 2, and 
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Model 3, which correspond to the flux formulations in 

equations (30), (31), and (32), respectively.  

Recall, the solution vector nR∈x  is composed of n 

elements that represent the unknowns (u, v, w, FS, FT) in 

the discretized model.  Each element in x must be multiplied 

by xr to recover the correct value of the unknown.  The 

output of the model is the vector x. 
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IV. MODEL RESULTS 

The previous chapters described the framework necessary 

to implement the model.  In this chapter, the results of the 

four different models are presented.  As discussed in 

Chapter III, some of the elements of the model framework are 

adjusted to better understand the physical processes at work 

in the diffusive staircases.  Each model will be described 

independently. 

A. ONE-DIMENSIONAL MODEL 

The one-dimensional model was developed as a precursor 

to the larger, more dynamically inclusive three-dimensional 

model.  The one-dimensional model allowed us to understand 

how the model worked and what type of output to expect. It 

also allowed us to observe the role of horizontal advection 

in the flux calculations. 
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In this case, we neglect all horizontal velocity 

components and consider a system where vertical advection of 

salt and heat are balanced by diffusion.  Equations (33), 

(34) and (35) are used for the inverse one-dimensional 

calculation.  Depth is measured from the sea surface and 

therefore vertical velocity is positive downward. 

 

Layer 
Potential 

Temperature 
(degC) 

Salinity 
(PSU)

Layer 
Thickness 

(m) 
Layer 
Depth 

1 -0.6533 34.3128 1.7605 220.5104
2 -0.6065 34.3307 1.9772 222.3872
3 -0.5589 34.3484 1.9700 224.4895
4 -0.5080 34.3654 2.0280 226.6684
5 -0.4513 34.3847 2.1539 229.5241
6 -0.4074 34.4006 2.1856 232.3383
7 -0.3687 34.4140 2.2638 234.2862
8 -0.3484 34.4243 1.1092 237.7177
9 -0.3084 34.4338 1.8727 239.5300

10 -0.2530 34.4521 2.7462 240.8740
11 -0.1792 34.4767 2.4911 245.2952
12 -0.1191 34.4967 3.2346 249.0272
13 -0.0747 34.5121 2.8019 252.1884
14 -0.0334 34.5261 2.2499 254.8196
15 0.0062 34.5380 2.3186 257.1105
16 0.0449 34.5506 2.3997 259.7826
17 0.0866 34.5641 3.5397 262.5461
18 0.1358 34.5825 2.3701 265.8477
19 0.1705 34.5953 2.8645 267.9215

Table 4.  One dimensional data set consisting of average 
values of potential temperature, salinity, and layer 

thickness for the entire basin. 

The inputs into the one-dimensional inverse model are 

average values of potential temperature, salinity and layer 

thickness.  The total set of 3452 profiles is used to obtain 

averages.  These data are shown in Table 4.  It is clear 

that temperature and salinity increase with depth, while the 

layer thickness ranges from just over 1 meter to just over 3 
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meters.  The average thickness is approximately 2.33 meters.  

The average change in temperature between layers is 

approximately 0.046ºC, and the average change in salinity 

between layers is approximately 0.16 PSU. 

Model parameters (w, KT, KS) were calculated for each 

interface above and below layers 2 thru 18.  Layers 1 and 19 

are used for input on the boundaries only.  Thus 18 values 

of the unknowns are calculated. Vertical velocity (w) is 

found to be constant, which is consistent with the 

integrated form of the continuity equation.  As expected, 

heat Flux (FH) is upward (positive), and  KT is negative.  

 

Interface Fh(W/m^2) Kt(10^-5 m2s^-1) w(10^-7 m/s) Rrho 
1 0.84 -0.85 -5 6.23 
2 0.88 -0.98 -5 5.97 
3 0.95 -1.03 -5 5.29 
4 0.84 -1.06 -5 5.30 
5 0.96 -1.55 -5 5.54 
6 1.51 -1.93 -5 5.23 
7 0.68 -2.90 -5 7.57 
8 1.18 -1.35 -5 3.50 
9 2.62 -1.61 -5 4.82 

10 0.99 -1.50 -5 4.80 
Mean 1.56 -2.31 -5.00 5.04 

Table 5.  One-dimensional Model 1 results. 

Table 5 is the results from the first one dimensional 

model run.  The most important output for this model is the 

Heat Flux (Fh).  The mean heat flux in the upward direction 

is 1.56 W/m2.  This is a critical value to determining 

whether diffusive convection contributes to ice melt. 

The second result is the calculated value of the 

amplitude of C(Rρ).  This value is 0.0032 in the Kelley 
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(1990) formulation of the 4/3 flux law (8).  Recall that 

this formulation was derived using laboratory experiments 

that may not represent what is observed in nature.  We 

attempt to calibrate this formulation to best represent the 

Arctic data. 

 

Figure 15.   Comparison of the two laboratory representations 
of Heat Flux and the calculated value of Heat Flux from 

the one-dimensional Model 1. 

Figure 15 illustrates that the heat flux (Fh) 

calculated in one-dimensional Model 1 is roughly an order of 

magnitude larger for the Arctic data.   

 h t
TF K
Z

Δ
= −

Δ
 (36) 

The heat flux was calculated using (36).  Where ΔT 

represents the temperature change between the layer above 
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and layer below the interface, and ΔZ represents the 

distance between the centers of the two layers.    

 

Interface
Fh 

(Model) 
Fh 

(Kelley) 
1 0.84 0.13 
2 0.88 0.14 
3 0.95 0.18 
4 0.84 0.20 
5 0.96 0.14 
6 1.51 0.13 
7 0.68 0.04 
8 1.18 0.22 
9 2.62 0.22 

10 0.99 0.33 
Mean 1.56 0.18 

Table 6.  Comparison of heat flux calculated using the one 
dimensional Model 1 and using Kelley (1990) formulation 

of the 4/3 flux law. 

In this formulation of the heat flux, the magnitude of 

the flux is not only dependent on the change in temperature 

between the two layers, but also on the size of the two 

layers.  This proposition is very different from the 4/3 

flux law, which states that the heat flux is independent of 

depth or layer thickness. Comparison with the earlier 

calculations (Kelley, 1990) reveals an order of magnitude 

difference in heat fluxes seen in Table 6.   
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Figure 16.   Fit of C(Rρ) as proposed by Kelley (1990) to the 
one dimensional Model 1 results. 

Figure 16 represents an attempt to calibrate the Kelley 

(1990) model to fit the fluxes obtained with the inverse 

model.  This resulted in a calculation of the amplitude of 

C(Rρ) based on the output of the curve fitting routine.  The 

result is a value of the amplitude of C(Rρ) = 0.0479, an 

order of magnitude larger than the amplitude of C(Rρ) in the 

Kelley (1990) formulation.  The upper and lower bounds, at 

the 95% confidence level, are 0.0603 and 0.0354 

respectively.  The associated RMSE is 0.0119, and the sum of 

the squared errors is 2.4484e-005. 

The one-dimensional case suggests that the 4/3 flux 

laws as stated by Kelley (1990) and Marmorino and Caldwell 
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(1976) are not applicable to the Arctic diffusive staircases 

in their original form.  Instead an order of magnitude 

adjustment must be made to the equations that correspond to 

a new value of C(Rρ).  This is similar to the idea of a 

transfer function proposed by Wilson (2007).  Additionally, 

the curve is not a perfect fit to the data.  Only five of 

the data points lie within the 95% confidence interval.  

There is a much steeper trend associated with this data that 

suggests an even stronger dependence on density ratio.  The 

three dimensional model is more inclusive, and shows a trend 

more consistent with the laboratory results. 

B. THREE-DIMENSIONAL MODEL 

1. Depth Dependent Discretization 

Model 1 utilizes the full three-dimensional 

discretization of the equations described by Lee and Veronis 

(1990).  The three dimensional data set described in Chapter 

II is used as input to the model.  The data set has 425 

individual grid cells for which the model parameters will be 

calculated, resulting in a total of 1275 equations and 1073 

unknowns.  The critical values of parameters (w, KS, KT) 

remain the same as the one dimensional dataset in that they 

are assumed to be constant at each interface.  The model 

calculated u and v components of velocity as well.  
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Interface Fh(W/m^2) Kt(10^-5 m2s^-1) w(10^-7 m/s) Rrho 
1 2.15 3.02 5.00 6.36 
2 2.29 2.95 -5.88 6.07 
3 2.41 2.76 -13.58 5.29 
4 1.54 2.17 -35.91 5.50 
5 1.73 2.69 -18.59 5.66 
6 1.70 3.17 -23.94 5.44 
7 3.33 2.92 9.82 5.52 
8 1.36 1.88 -1.67 4.34 
9 2.27 3.01 29.37 4.33 

10 1.91 2.88 -6.84 4.75 
Mean 2.07 2.74 -6.22 5.32 

Table 7.  Three dimensional Model 1 results. 

Table 7 is the results of three-dimensional model 1.  

The heat flux (Fh) is consistent with that of the one 

dimensional model for interfaces 1 through 10.  Below 

interface 10 the heat fluxes begin to rise to questionable 

levels.  The mean heat flux -2.07 W/m2 is for the first 10 

interfaces.  The assumption of uniform velocity at the 

interface resulted in vastly different values of vertical 

velocity throughout the data.  
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Figure 17.   Comparison of the two laboratory representations 
of Heat Flux and the calculated value of Heat Flux from 

the three-dimensional Model 1. 

As in the one dimensional model it is important to show 

how these results relate to the 4/3 flux laws.  Figure 17 is 

a plot of the calculated values for heat flux and those 

using the laboratory derived formulations.  Like the one 

dimensional model calculations, the three-dimensional model 

values of heat flux are about an order of magnitude larger 

than those calculated using the laboratory formulations of 

the 4/3 flux law. 
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Interface 
Fh 

(Model) 
Fh 

(Kelley) 
1 2.15 0.13 
2 2.29 0.13 
3 2.41 0.15 
4 1.54 0.21 
5 1.73 0.17 
6 1.70 0.10 
7 3.33 0.07 
8 1.36 0.16 
9 2.27 0.26 
10 1.91 0.36 

Mean 2.07 0.19 

Table 8.  Comparison of heat flux calculated using the 
three-dimensional Model 1 and the Kelley (1990) 

formulation of the 4/3 flux law. 

The heat fluxes associated with these values of 

diffusivity are naturally an order of magnitude larger than 

those calculated using the Kelley (1990) formulation.  Table 

8 is a comparison of heat flux calculations.  The heat flux 

from the model is calculated using (36).  The mean value 

shown for the model calculation is the mean for just the 

first 10 interfaces.  The mean for the Kelley formulation is 

that of all 19 interfaces.  The difference between the two 

is a full order of magnitude.   
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Figure 18.   Fit of C(Rρ) as proposed by Kelley (1990) to the 
three dimensional model 1 results. 

Figure 18 is the attempt to calibrate the 4/3 flux law.  

The fit curve excludes the interfaces 14-18 since the 

results for those interfaces were extremely far from the 

rest of the data.  The results of the curve fitting were a 

value of the amplitude of C(Rρ) = 0.0635.  The upper and 

lower bounds of the 95% confidence interval are 0.0805 and 

0.0464 respectively.  Nearly all of the data points fall 

within these bounds, which shows that the general trend in 

the data is similar to that of Kelley (1990), yet the model 

results are an order of magnitude larger. 
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2. 4/3 Flux Law Discretization with C(Rρ) Unknown 

In order to compare the results of the previous section 

to the 4/3 flux law more directly, the model discretization 

had to be changed. The new model discretization corresponds 

to three-dimensional Model 2 as discussed in Chapter 

III,Section D. 
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The equations remain the same except for the last two 

terms.  The coefficients of diffusivity are changed to 

reflect the (ΔT)4/3 relationship described by Turner (1973).  

This relationship is normalized by the mean layer thickness 

and mean temperature gradient in order to maintain the same 
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dimensionality as the original discretization. The 

continuity equation remained the same.  The data set, number 

of equations, and number of unknowns are the same as the 

previous section. 
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2
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⎛ ⎞Δ⎜ ⎟
⎝ ⎠=

Δ
  (39) 

( )( )

( )

4
3

1
3

2

2
S

C R S
F

h S

ρ
⎛ ⎞Δ⎜ ⎟
⎝ ⎠=

Δ
 (40) 

The equations used to calculate the fluxes are 

different because of the changes to the discretization.  

Temperature (39) and salinity (40) fluxes are now a function 

of (ΔT)4/3, and the fluxes must be normalized by  the mean 

layer thickness and mean temperature gradient as well. 

 

Interface Fh(W/m^2) Kt(10^-5 m2s^-1) w(10^-7 m/s) Rrho 
1 0.69 0.78 5.00 6.36 
2 0.79 0.98 -12.14 6.07 
3 0.86 1.04 3.74 5.29 
4 0.73 0.60 8.01 5.50 
5 0.72 0.73 -0.90 5.66 
6 0.53 0.96 13.52 5.44 
7 0.45 1.19 -1.68 5.52 
8 0.56 0.83 3.99 4.34 
9 0.82 0.74 -8.36 4.33 

10 0.85 0.50 2.47 4.75 
Mean -9.96 -0.83 1.37 5.32 

Table 9.  Three-dimensional Model 2 results. 

The model results are presented in Table 9.  We again 

observe questionable heat fluxes below layer 10, which we 

attribute to uncertainties of clearly identifying layers 11-
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15. Those results are not shown.  Overall the heat fluxes 

are less than 1 W/m2.  The mean heat flux in the upper 10 

layers is 0.70 W/m2. 

 

Interface 
Fh 

(Model) 
Fh 

(Kelley) 
1 0.69 0.13 
2 0.79 0.13 
3 0.86 0.15 
4 0.73 0.21 
5 0.72 0.17 
6 0.53 0.10 
7 0.45 0.07 
8 0.56 0.16 
9 0.82 0.26 
10 0.85 0.36 

Mean 0.70 0.19 

Table 10.   Comparison of heat flux calculated using the 
three-dimensional model 2and the Kelley (1990) 

formulation of the 4/3 flux law. 

Table 10 shows that the fluxes in this inverse 

calculation are a factor of 3-5 larger than the Kelley 

(1990) calculation.  While they are not a full order of 

magnitude different as in the previous section, there is 

still a significant difference. 
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Figure 19.   Comparison of the two laboratory representations 
of C(Rρ) and the calculated value of C(Rρ) from the 

three-dimensional Model 2. 

Figure 19 is the C(Rρ) plot.  The general pattern of 

the diffusivities calculated by the inverse model is the 

same.  However, the difference between the model and the 

Kelley (1990) and Marmorino and Caldwell (1976) calculations 

is only a factor of 3-5.  The five outliers for lower values 

of density ratio correspond to the lower five layers, which 

show anomalous results. 
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Figure 20.   Fit of C(Rρ) as proposed by Kelley (1990) to the 
three-dimensional Model 2 results. 

Removing the lower five layers from the curve fitting 

routine allows for a much better estimation of the amplitude 

of C(Rρ).  Figure 20 is the result of the curve fitting 

routine.  The result is a value of the amplitude of C(Rρ) = 

0.0185.  The upper and lower bounds are equal to 0.0232 and 

0.0139 respectively.  This represents a significantly 

reduced confidence interval compared to Model 1. 

3. C(Rρ) Calculation using Kelley (1990) 4/3  
Flux Law  

Now we attempt to directly extract the amplitude of the 

coefficient C(Rρ) from the inverse calculation.  The entire 

Kelley (1990) formulation of the 4/3 flux law is used as the 
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coefficient in the model.  Thus, the result is an exact 

value for the amplitude of C(Rρ) as model output.  We assume 

that the pattern of C(Rρ) is correctly captured by the 

laboratory experiments, but the amplitude (B) requires 

calibration. 
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We also assume that B is constant and that it is not 

dependent on the density ratio, so in the model it is 

treated as a single unknown.  This reduces the number of 

unknowns to 1038 with the number of equations remaining 

1275.  The last two terms are again normalized by the mean 

layer thickness and mean temperature gradient in order to 

maintain the same dimensionality as the original 

discretization.  The continuity equation remained the same. 
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Interface Fh(W/m^2) w(10^-7 m/s) Rrho 
1 0.49 5.00 6.36 
2 0.47 -2.53 6.07 
3 0.55 -5.07 5.29 
4 0.79 11.88 5.50 
5 0.63 -11.01 5.66 
6 0.37 23.70 5.44 
7 0.25 -43.40 5.52 
8 0.58 91.44 4.34 
9 0.96 -108.90 4.33 

10 1.34 82.35 4.75 
Mean 0.64 4.35 5.32 

Table 11.   Three-dimensional Model 3 results. 

The results are shown in Table 11.  The heat fluxes are 

generally below 1 W/m2, with the average heat flux being 

0.70 W/m2.  The difference is still significant, and is 

comparable to the three dimensional model 2 results.  The 

vertical velocities are also anomalously high below layer 

11. 

 

Interface 
Fh 

(Model) 
Fh 

(Kelley) 
1 0.49 0.13 
2 0.47 0.13 
3 0.55 0.15 
4 0.79 0.21 
5 0.63 0.17 
6 0.37 0.10 
7 0.25 0.07 
8 0.58 0.16 
9 0.96 0.26 
10 1.34 0.36 

Mean 0.70 0.19 

Table 12.   Comparison of heat flux calculated using the 
three-dimensional Model 3 and the Kelley (1990) 

formulation of the 4/3 flux law. 
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Table 12 is the comparison of Model 3 results and the 

fluxes calculated using the Kelley (1990) formulation of the 

4/3 flux law.  The difference between the two is exactly a 

factor of 3.717 throughout the data.  This makes sense in 

that all we changed is the amplitude of the calculation, and 

thus all we changed is the multiplying factor determining 

the fluxes. 

 

Figure 21.   Comparison of the two laboratory representations 
of C(Rρ) and the calculated value of C(Rρ) from the 

three-dimensional Model 3. 

Figure 21 is the plot of density ratio versus 

diffusivity.  The trend in the calculated values from the 

inverse model is the same as the laboratory results. The 

difference in magnitude is approximately a factor of 3.  
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There are no anomalous results since the whole 

parameterization from Kelley (1990) was used.   

The data fitting routine in this case is not necessary, 

since the output of the inverse calculation is a direct 

calculation of the coefficient C.   
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V. DISCUSSION AND CONCLUSIONS 

A. DISCUSSION 

This work attempts to infer the vertical heat fluxes 

through diffusive staircases in the Beaufort Sea using 

techniques of inverse modeling.  Table 13 summarizes the 

heat flux results for the four models presented in Chapter 

IV.  The values of the fluxes are significantly higher than 

laboratory extrapolation (Kelley, 1990) would suggest.  The 

mean fluxes shown are for the upper 10 layers in all of the 

models.  The mean of those four is approximately 1.25 W/m2.  

This suggests that the upward heat flux due to diffusive 

convection is sufficient enough to contribute to sea ice 

melt in the southern Beaufort Sea. 

 

Interface Fh (1D Model) Fh (3D Model 1) Fh (3D Model 2) Fh (3D Model 3) Fh (Kelley)
1 0.84 2.15 0.69 0.49 0.13 
2 0.88 2.29 0.79 0.47 0.13 
3 0.95 2.41 0.86 0.55 0.15 
4 0.84 1.54 0.73 0.79 0.21 
5 0.96 1.73 0.72 0.63 0.17 
6 1.51 1.70 0.53 0.37 0.10 
7 0.68 3.33 0.45 0.25 0.07 
8 1.18 1.36 0.56 0.58 0.16 
9 2.62 2.27 0.82 0.96 0.26 

10 0.99 1.91 0.85 1.34 0.36 
Mean 1.56 2.07 0.70 0.64 0.19 

Table 13.   Comparison of heat fluxes calculated from all 
models. 

The most glaring discrepancies in the calculations are 

the abnormally large flux values below layer 10 in three-

dimensional models 1 and 2.  One reason for these large flux 
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values is the dependence on layer thickness in the model 

discretization.  

 

Layer Thickness (m)
1 1.78 
2 1.59 
3 1.54 
4 1.80 
5 2.12 
6 2.24 
7 1.90 
8 1.14 
9 1.56 

10 2.38 
11 2.45 
12 3.22 
13 2.27 
14 2.67 
15 1.99 
16 3.36 
17 1.72 
18 2.91 
19 1.53 

Table 14.   Mean layer thicknesses. 

Table 14 is the average layer thicknesses for each 

layer.  The deeper the layers the larger the thickness 

values become.  There is a significant increase in layer 

thickness below layer 10.  Layer thickness is in the 

denominator in the vertical terms.  This increase in 

thickness effectively reduces the value of the coefficient 

in the discretized model and requires an increase in the 

calculated unknown.  A discretization scheme that uses an 

average layer thickness may reduce this erroneous result. 

The one-dimensional model performs well, and is less 

variable than three-dimensional Models 1 and 2, and its 

variability is comparable to three-dimensional Model 3.  
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Neglecting horizontal velocity likely dampened the effect of 

the layer thickness dependence in the flux calculations.  

Thus, there were no erroneous results in the deeper layers. 
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The vertically integrated thermal wind equations state 

that horizontal velocities are balanced by horizontal 

pressure gradients.  This implies that the direction and 

magnitude of the horizontal velocity is strictly controlled 

by the thickness differences between adjacent cells in the 

data.  The direction of the flow is calculated to be in the 

direction of the thinner cell, and the magnitude is a result 

of the relative differences in thickness between the two 

cells.   

Layer thickness is in the numerator in the horizontal 

terms, possibly lowering the value of horizontal velocity.  

It is likely that the combination of the sensitivity of the 

vertical heat flux calculations and the sensitivity of the 

horizontal velocity terms to the layer thickness contributed 

to the anomalies in the deeper layers in the two models were 

both were factors in the calculation. 
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Model Amplitude of C(Rρ)
1D Model 0.0479 
3D Model 1 0.0635 
3D Model 2 0.0185 
3D Model 3 0.0119 
Kelley 0.0032 
Marmorino & Caldwell 0.0086 

Table 15.   Comparison of amplitudes of the 4/3 flux law 
coefficient C(Rρ). 

Table 15 compares the results of each models output for 

the coefficient of amplitude of C(Rρ).  As one may expect, 

the formulations of the inverse calculation that more 

closely represents the Kelley (1990) formulation of the 4/3 

flux law (3D Model 2 and 3D Model 3) yielded results that 

were closer to Kelley’s value of the amplitude.  However, 

these results are still a factor of 4-6 larger than Kelley’s 

laboratory results.  The one-dimensional model and the 

three-dimensional Model 1 both used the layer thickness 

dependent version of the model formulation and yielded 

results more than a full order of magnitude greater.  Caro 

(2009) found results similar to Model 2 and 3 via two-

dimensional direct numerical simulation, and Wilson (2007) 

found results similar to the 1D model and 3D Model 1 

analyzing the ITP data. 

The accuracy of the calculations is not directly 

addressed.  There are several questions associated with the 

accuracy of the calculations that need to be answered with 

further study.  One very important measure of how well the 

TLS algorithm performs is the condition number.  The 

condition number measures the sensitivity of the solution of 

the system of equations to errors in the data.  A small (~1) 
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value of the condition number indicates a well conditioned 

system, and thus a system that is not too prone to solution 

error.  The larger the condition number, the more sensitive 

the solution is to errors in the system.  The condition 

number of the data matrix A in the one dimensional model is 

781 indicating that the system is quite sensitive to data 

errors.  The addition of more equations and more unknowns to 

the problem only increases the sensitivity.  The condition 

numbers for three-dimensional Models 1-3 are on the order of 

108.   

B. CONCLUSIONS 

The inverse modeling technique was successful at 

calculating the heat flux in the southern Beaufort Sea.  

There are sensitivities associated with the models due to 

the differences in layer thickness.  In the lower layers, 

where thickness is greater, there is greater potential for 

large flux values and small horizontal velocities due to the 

larger values of layer thickness.  Ultimately, the upper 10 

layers showed that the mean heat fluxes were 1.25 W/m2, and 

therefore likely to contribute to sea ice melt. 

The data suggest that the amplitude of the exponential 

form of C(Rρ) is likely within the range of a factor of 4 to 

nearly an order of magnitude larger than laboratory results 

(Kelley, 1990; Marmorino & Caldwell, 1976) indicate.  The 

application of the inverse model has shown that 

extrapolation of laboratory results to the ocean is not 

perfect, and in this case, not representative of observed 

ocean conditions.  Laboratory experiments provide a 

foundation for which observational scientists can pose 
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hypotheses, but ultimately, the true test of a laboratory 

based theory is how well the observed data corroborates the 

results. 

C. RECOMMENDATIONS 

Several questions remain unanswered.  First, is there a 

way to improve the condition of the system of equations?  

Second, what is the spatial variability of the heat fluxes 

throughout the Beaufort Sea?  Finally, can a well designed 

experiment, where data is collected systematically in a 

grid, improve the results? 

It would be beneficial to add a set of equations to 

constrain velocities to known physical principles such as 

Thermal Wind or Conservation of Vorticity. Lee and Veronis 

(1990) did do this, and their results were more consistent 

than estimates based entirely on the advection-diffusion 

equations. 

The spatial variability of the model must be explored.  

This study only used one location in the southern Beaufort 

Sea.  The model needs to be run in several locations to gain 

a perspective on the changes in fluxes throughout the 

region. 

The possibility of Inverse Modeling using an 

unstructured grid should be explored. Unstructured modeling 

is a rapidly developing field.  This would be very useful in 

oceanography because of the nature of data collection in the 

WHOI ITP program.  The use of an unstructured grid would 

allow the direct implementation of these modeling techniques 

without interpolation, thus, reducing one possible source of 

error. 
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In-situ measurements taken within several days would 

likely improve the model.  We recommend that in-situ 

measurements need to be collected on a regularly spaced grid 

(similar to C-SALT experiment in Tropics).  A clear snapshot 

of the Beaufort Sea at one specific time would significantly 

reduce error in the model.  The dynamic nature of the Sea 

creates a source of error naturally.  Modeling of this 

nature utilizes static forms of the equations and neglects 

any temporal variation.  Thus, a timely set of in-situ 

measurements would likely improve the results. 
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